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Bottom reverberation in shallow water: 
coherent properties as a function of 
bandwidth, waveguide characteristics 
and scatterer distributions 

Kevin D. LePage 

Executive Summary: Shallow water presents a difficult environment for 
finding submarines. Since shallow water is typically a reverberation limited 
environment, it is important to understand the predictable structure of the 
reverberation in order to aid the design of processors and detectors which work 
properly in these environments. In this report, the temporal characteristics 
of monostatic reverberation are predicted as a function of source bandwidth, 
source-receiver depth, and the propagation characteristics of shallow water. 
Results show that at early time, reverberation can be highly coherent across a 
vertical line array, violating the homogeneous noise assumption, while at late 
time the reverberation becomes increasingly uncorrelated. This is shown to be 
due to the ensonification of independent bottom patches at late time. It is also 
shown that this decorrelation of the reverberation is dependent on the propaga- 
tion characteristics of the particular shallow water environment, the correlation 
length scale of the scatterers, and the bandwidth of the source, with high band- 
width sources causing decorrelated reverberation sooner than low bandwidth 
sources. The results also show that there are several identifying characteristics 
in reverberation time series which may be useful for identifying the types of 
scatterers which cause reverberation during particular experiments. Finally, 
the techniques developed in this report may be used to generate reverberation 
time series from scatterers obeying different amplitude and spatial distribu- 
tions. This ability should be used in the future to help understand whether 
it is possible to simulate the conditions under which reverberation becomes 
non-Rayleigh, as has been observed experimentally by the Centre in recent 
experiments. 
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Bottom reverberation in shallow water: 
coherent properties as a function of 
bandwidth, waveguide characteristics 
and scatterer distributions 

Kevin D. LePage 

Abstract: Scattering physics are often modeled using the Helmholtz equa- 
tion for computational reasons. Likewise, propagation loss to and from scatter- 
ing regions are often treated in a like manner. The usual approach for gener- 
ating reverberation time series therefore requires a numerical Fourier synthesis 
which can obscure the physics of reverberation phenomenology. Here we model 
the reverberation process approximately using normal modes and perform the 
Fourier synthesis explicitly under a narrow band approximation. The modes 
are allowed to interact with the bottom individually, but the interaction of the 
modes at the bottom is also retained. Therefore the approach allows pathologi- 
cal propagation phenomena such as convergence zones to be explicitly modeled. 
As a natural result of the broadband nature of the analysis, the interaction of 
the modes with each other at the bottom is seen to be governed by the band- 
width of the analysis and the dispersive properties of the waveguide. The result 
is that modes which interact coherently at bottom patches at early time may 
decorrelate at late times, in ways which are determined by the mean propaga- 
tion physics of the waveguide and the reverberation analysis band. 

In the interests of keeping the approach as general as possible, the physics 
of the bottom scattering process are specified by the user. These physics are 
supplied in the form of local bottom scattering functions, which will generally 
be related to the mode shape functions and their derivatives at and in the 
bottom, which are sensitive to the detailed bottom structure and the incident 
grazing angles of each mode. This approach makes it possible to model several 
of the more popular bottom scattering models, such as perturbation theory 
and Lambert's law, within the framework of a general reverberation model. 
All scattering is assumed to be weak, so that a small imaginary part of the 
model eigenvalues is sufficient to account for energy loss due to scattering, and 
local, so that the field scattered at any particular part of the bottom is due only 
to the bottom properties at that particular point. This latter approximation 
serves as a restriction on the ability of the model to accommodate large scale 
scatterers such as facets or other target type features, but is useful for modeling 
clutter, the intended objective. 

Keywords:      reverberation o scattering o narrowband 
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Introduction 

Reverberation at a given time is modeled as coherent propagation over a sum of nor- 
mal modes to all candidate bottom locations, a local interaction with some sediment 
or subbottom process at each candidate location, and deterministic propagation over 
a second sum of normal modes back to the receiver. Given the physics of wave-guide 
propagation and the bandwidth of the processing, certain parts of the bottom will 
yield the bulk of the backscattered return at any given time. These ranges are 
generally assumed to be determined by the relation 

r = ct/2. 

In the following it will be shown that the simple relation given above for the scatterer 
range should in reality be replaced by the time over the sum of the modal group 
slownesses 5n,m for the mode pair of interest at the center frequency of interest. The 
modal group slownesses in turn are the inverse group speeds dknim/du>, a parameter 
which is intimately related to the narrow band approximation used throughout this 
report. 

The geometry is monostatic in the horizontal coordinates, although different depths 
of the source and the receiver may be accommodated. As a generalization, differ- 
ent source and receiver vertical apertures and receiver characteristics may also be 
accommodated, although they are not explicitly treated in this report. The bottom 
scatterers themselves are assumed to be a homogeneous distribution with isotropic 
Gaussian correlation properties. 

This work follows in the footsteps of two other normal mode reverberation treat- 
ments, one of which is embodied in the reverberation model developed at SAC- 
LANTCEN by Dale Ellis [1], and the other of which is a more similar treatment 
for volume inhomogeneity scatter in a shallow water waveguide developed by D. J. 
Tang [2]. This treatment differs from the ones which came before in that more em- 
phasis is placed on the importance of modal interaction, and consequently a better 
understanding of when the modal components of the backscattered field are coherent 
or are not coherent has been developed. The theory developed here also explores 
the time dependent properties of spatial coherence and explores how the ratio of 
the bottom patch size to the correlation length scale of the scatterers affects the 
resonant scattering characteristics of the reverberation. 

- 1- 
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Theory 

Under the far field approximation, the total field "incident" from a point source to 
a scatterer on or in the bottom at range r and frequency u is given approximately 
by 

rtu,z.,r)*^£+2^e^, (1) 

where the km are the modal wavenumbers, the <j)m the mode shape functions and z3 

is the source depth. 

In Eq. (1), the scattering function 0~ is intended to represent the excitation of some 
sediment or subbottom scatterer by mode m. For instance, in the simplest rough 
surface perturbation theory, the excitation of a scatterer is linear in the scatterer 
size and the difference between the normal derivative of the mode shape function 
over the boundary impedance and the second derivative at the scattering boundary 
(see Annex D for details of the derivation) 

d% "m 
m, perturbation ßz2 dz 

z=zb 

(2) 
z=zb 

At the bottom, we parameterize the scattering amplitude by a local scatterer distri- 
bution T), which is a function of range and azimuth and which, for the purposes of this 
development, is real and distributed Gaussian in amplitude1. From this scatterer 
the propagation back to the receiver is given by the Green's function 

where <p+ represents the ability of the scatterer to excite the waveguide in the 
backscattered direction.   Taken together, the backscattered field from scatterers 

lrTo accommodate propagation uncertainty, it might be attractive in the future to model this 
as two independent Gaussian random variables, one for the in-phase component and one for the 
quadrature. However, the exact form of the distribution is only important for the determination 
of the higher moments of the short time average of the reverberation. The determination of these 
values will be the subject of a subsequent report. 
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at all ranges and azimuths at frequency u is 

/2ir        r°°       Ä£ J(kn+km)r 
p(u>,z„zT) = 2x        dO       drJ2E Mz,)<t>nT)(r,0)<t>+Mzr)     .,   .      ■     (4) 

J0 J0 m=ln=l V*n«TO 

The backscattered time series is then given by the inverse Fourier transform 

r2ir riir too 
p(t,zs,zr)   =    /     d9l    drr](r,0) 

Jo        Jo 
£,  JL, . e-i("t-(kn+km)r) 

x  Jf    M«)EE*»Wtt+A.W—7^1=—-  (5) 
m=l n=l 

where the mode shape functions </>n,m, the scattering functions <j>±m and the modal 
eigenvalues kn<m are all implicit functions of frequency. Although such an expres- 
sion can be evaluated numerically, solutions in this form cannot provide significant 
insight into the controlling characteristics of reverberation. Instead what is required 
is the short time average (STA) of the square of the quantity p(t), since we are 
interested in intensity, and since we are interested in the expected intensity, we seek 
the ensemble average {psTA). In order to gain insight, we would also like to be able 
to evaluate the desired quantities analytically. Looking at Eq. (5), it seems that 
the two largest hurdles to closed form evaluation are the generally unknown spatial 
characteristics of the scatterer distribution r?, and the frequency integrals over the 
modal Green's functions p, and pr. The first difficulty can be overcome if we as- 
sume that the spatially statistics of the scatterers are known. The second difficulty 
may be overcome for signals of limited bandwidth by making use of the narrowband 
approximation. 

In the narrowband approximation, temporal responses of filters are approximated by 
expanding the filter response about a center frequency. In this application the filters 
of interest are the Green's functions in Eqs. (1) and (3). The mode shape functions 
and the scattering functions <f>+ and <jr are both assumed to remain unchanged in 
the vicinity of the center frequency; the wavenumbers Jbnim are assumed to change 
following the second order Taylor series expansion about the center frequency 

kn = fn + (U-u0)^. + (u;-a>0)
2 d2kn 

w=w0 * du2 (6) 

Insertion of Eq. (6) into Eq. (5) and integrating over a bandwidth of Aw yields the 
approximation 

p(t, z„ Mr)   =   4K)R ( [2* de r dr V(r, 0) f f #»(*«)*£"#•#(*)  (7) 
[Jo     Jo }txh       sfiiK       K) 

J-AUJ J 
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where Snm is the sum of the modal slownesses ^ + &*>, and Dnm is the sum of the 

modal dispersion terms ^ + &•• If we assume for the moment that the modal 
dispersion is negligible, then the frequency integral in Eq. (8) may be performed 
with the result after some rearrangement 

P(t,Zs,Zr)     =     O A ,.,4(,.tj)» J.-.W V; £ <&(*')<%;4?K(*r) 
I m=l n=l V^n^m 

r2ir roo \ 
x    yo    rf^    dr7?(r,<?)e'^+A-)r

5mC(Aa;(<-5nmr))|.       (8) 

Several intuitive observations may be made upon inspection of Eq. (8). The first is 
that the amplitude of the reverberation time series increases linearly with the band- 
width Aw, consistent with the fact that the energy in the time series is increasing as 
more frequencies are included. The second is that the contribution to the scattered 
field at time t comes from a region concentrated about r = t/Snm, i.e. from ranges 
close to the time over the round trip modal slowness, a result which we observed at 
the beginning of this section derives directly from the narrowband approximation, 
which expands the kernel in the same way as a stationary phase evaluation of the 
inverse Fourier transform. Furthermore, we see that the response at time t is a local 
Fourier transform of the scattering process 77, which is windowed by a sine function 
whose spatial extent is approximately Ar ~ A*gnm or approximately c/2 A /, the 
classic "patch size" from reverberation analysis. 

At this point it is useful to consider the different behavior of the reverberation in 
the limits of narrow and broadband frequency excitation. First there are the ef- 
fects which exist in general for any particular mode pair and are not related to the 
coherent nature of the propagation which can introduce structure when Eq. (8) is 
summing coherently. If the spatial window is very narrow in extent (i.e. broadband 
excitation,) then the individual scatterers dominate the return at any given time and 
the spatial Fourier transform has inadequate aperture to allow resonant scattering 
to occur. In addition, we can expect the variance of the backscattered time series 
to be on the order of the variance of the individual scattering cross sections of the 
scatterers themselves, since very few scatterers contribute to the total return from 
each mode pair at any given time. On the other hand, if the spatial window is very 
broad, as is the case for very narrowband scattering processes, then the window is 
much larger than the correlation length scale of the individual scatterers and res- 
onant scattering can occur. In this case, we can expect much lower amplitudes of 
backscatter compared to the level of individual scattering cross sections in the win- 
dow, and lower overall variance of the reverberation intensity, since many correlation 
lengths of the scatterers are insonified. 

The second effect of bandwidth is how it controls the amplitude of the interference 
terms between the modes.   Since the individual modes have different slownesses, 
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we may expect coherent interference terms to disappear between modes where the 
difference between the range integrated round trip slowness Atnm = (Snn - Smm)r is 
greater than one over the bandwidth, i.e. Atnm > 2TT/ AU. Put another way, modes 
which interrogate different patches of the bottom at a given time are decorrelated 
and will yield no interference structure associated with coherent propagation to 
the backscattered field. Thus for broad band excitation, we can expect significant 
variance in the reverberation intensity, but a fairly smooth mean; conversely, we 
expect highly structured mean reverberation intensity for narrow band excitation but 
lower variance about this structure. We can therefore anticipate that reverberation 
deviation from smooth parameterized curves comes from a combination of effects 
induced by propagation (waveguide effects) and effects introduced by the scatterers 
themselves. 

Even though we can understand how the various terms in Eq. (8) control the 
character of the reverberation as a function of time, evaluation of the windowed 
Fourier transform of the spatial distribution of scatterers is difficult to quantify 
in closed form. For this reason we adopt a slightly different form of the narrow 
band approximation where now we assume that the bandwidth is controlled not by 
absolute frequency limits but by a Gaussian window function 

A(u) = ^e-O"-«".)2/^ 

which when inserted into Eq. (5) along with Eq. (6) yields a slightly different form 
of the narrowband approximation which will prove more useful 

I m=l n=l V^n^m 
(lit too •> 

x     I    dO       dri7(r,tf)e,"(*S+*^)pe-<'-*»»r)/4^-»l, (9) 

where a2
nm = Au;-2-iDnmr/2. The termexp(-(*-Snmr)2/4<r2m)in Eq. (9) serves 

the same purpose as the sine function in Eq. (8), with the added attraction that the 
dispersion Dnm is now included explicitly and that the windowed Fourier transform 
will be easier to evaluate in subsequent manipulations. However, all of the intuition 
we have gained concerning the effects of bandwidth remains valid, with an additional 
point which can be added concerning the effect of dispersion. Dispersion will have 
the effect of increasing the patch sizes at late times, both decreasing the variance 
of the scatterer contribution and increasing the importance of coherent propagation 
effects. 

We now turn our attention to the short time average of Eq. (9). First we review 
complex envelope theory. Equation (9) has the form 

p(t) = x{e-i»°tA(t)}, 

-5- 
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where A(t) is the so called complex envelope which is everything in the bracket in 
Eq. (9) following the e~tWot. Squaring p(t) and expanding we get 

p\t)   =   &{A(t)}2cos2(u0t) + $s{A(t)}2sm2(u0t) 

+   2£ {A(t)} cos(u0t)S {A(t)} sm(u0t) 

which upon a short time average yields 

2 
=    A(t)A*(t) 

2 
(10) 

Under the last identity, the short time average of the backscattered intensity, i.e. 
the square of Eq. (9), is given by 

wA2    N     N     N      N 

PSTA{^^ZUZ2)     =     — Y, Y,   £   £ ^nm<W (11) 
m=l n=l m'=l n'=l 

V   ™   "***n'   m' 
Jr2ir r2ir roo too 

'     d9\     d& /    dr /    dr'Tjir^Wr',?) 
o        Jo Jo       Jo 

where Ar* indicates &{£} - i$s{k} and the superscripts o indicating that the mode 
functions and eigenvalues are evaluated at the center frequency have been dropped 
for compactness of notation. Note that Eq. (11) gives the short time average of the 
reverberation intensity explicitly in terms of two receiver depths zi and z2. Thus 
it is important to note that this development will yield the quantities necessary to 
predict the time dependent vertical coherence 

p\t,Zl,Z2) EE PW'.»!,*) (12) 

yPSTA^^ ^i^PsTA^' *2, Z2) 

Since sonar system operators in general have at most only general statistical char- 
acterizations of the bottom scattering parameters at their disposal, we will turn our 
attention to the evaluation of the ensemble average of Eq. (11). The only random 
variables in Eq. (11) are the scatterer distributions r\. The ensemble average of 
these two distributions in Cartesian coordinates and under assumptions of spatial 
homogeneity is 

(r)(r, %(r', 9')) = Rv(r cos 9 - r'cos 9', r sin 0 - r'sin9'). 
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If we assume that the scatterer autocorrelation function Rv corresponds to an 
anisotropic Gaussian parameterization with correlation length scales lx and ly and 
a skew angle aligned with 0 = 0, 

Rr>= Sjy
eM-{x2/2£*+ y2/2£y^ (13) 

and perform the change of variables r" = r' - r and 9" = 0' - 6, we have in the far 
field 

x   ~   r" cos 0 - r0" sin 9 

y   ~   -r"sin0-r0"cos0. (14) 

Insertion of Eqs. (14) into Eq. (13) and integration over 9" yields (See Annex A for 
details of the derivation) 

•2ir-0 lm2\ 
I*'   d9"Rv(r,r",9,9")   ~     =^2 

irr£y^2x(sin2 9 + t2ll\ cos2 9) 

n£l /2sec2 e + Pjq esc2 9) 

,     .„.cos2 9     sin20xx .    . 
x   expt-r"^—+—)), (15) 

which delivers the commonly adopted r-1 term heretofore missing from the rever- 
beration equations. The result shows that the geometric decay in the reverberation 
level is due solely to the azimuthal decorrelation of the scattering centers. This term 
can only be obtained explicitly upon seeking the ensemble average, and is not ex- 
plicitly present in Eq. (11), which on first inspection might seem to indicate that the 
reverberation intensity does not decay with increasing time. Of course realizations 
of the short time average will show this decay for all times associated with reverber- 
ation coming from ranges significantly greater than a correlation length scale, as the 
double azimuthal integral will introduce a linearly decreasing number of correlated 
components for increasing range. 

In the limit of isotropic roughness with correlation length /, the ensemble average of 
the short time average of the reverberation intensity reduces to 

N     N     N      N ,   2\ 
(p2sTA(t,za,zu22)) = 2*2A2 E E E E       {v) 

L*i L*, L-t  L^i  —  ; = 
»=ln=lm'=ln'=l ^^Tr^^CT2^, 

x      <f>rn{za)(j)m'{z3)<t>^(l}^l4>t(i>t4n{z\)<t>n'{Z2) 

x     I    dr I    dr^Tr   /2M*"+*™-(*n'+*w))re-'(*:,+*;,)'-'' 

x     e-(t-5„mr)V4^me-(<-5n/m/(r+r»))2/4(a;/m,)2 
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If we approximate r"1 in the kernel by Snm/t and evaluate a2
m approximately as 

Aw" - iDnmt/2Snm then all the remaining range dependence of the kernels resides 
in linear and quadratic terms in the arguments to the exponentials. If we take the 
further approximation of taking the lower limits on the range integrals as -oo, the 
two range integrals may be evaluated exactly (see Annex B for details.) Under these 
approximations the ensemble average of the short time average of the reverberation 
intensity is 

N     N     N      N 
{p2sTA(t,*s,zx,z2)) = 2*

2
A

2
 E E E E tf)Sn 

=1 n=l m'=l n'=l #\/27!~y'o\mo\, 

<l>m{zs)K'{z,)<i>^<i>^,4>tK.'M^)<t>n>{z2) 

x   e*p<„,|^(*-l)-^ 

' C2 c2 

- i (K + km- {kn> + *m»)(l - £)) 

I      V      \4<Tnm       ±°l.m,) Sn,m, 

.(Jf^ + 1/2* 
n'm' 

-1 

N 
"nm "->.■>«,/ + ^mL(l_Ä) 4o-2      ^ Aa2 

-1 

(16) 

where 

* = (i + i°l<m>isl,m,e) 
-i 

(17) 

In Eq. (16) and (17) all quantities with primed subscripts are assumed to be conju- 
gated. 

Equation (16) gives the ensemble average of the short time average of the reverber- 
ation intensity directly in terms of time, modal slownesses, modal dispersion and 
the correlation length scale of the scattering process. The arguments to the expo- 
nential functions all sum to a number smaller than zero. This is intuitive since the 
exponential functions indicate the contributions to the reverberation between mode 
sets. For this reason the product of the exponential functions may be viewed as a 
time dependent modal correlation function p2. 

In order to gain insight into the expected behavior of the reverberation intensity, 
it is useful to evaluate the behavior of the modal correlation function in simplified 
circumstances. In the limit of zero dispersion, p2 may be written 

8- 
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in'm'tM.Aw)     -+     exp 

^     '      4      11 + /2/2I» P  5nW(l + 2Z2/^2) 

+ 2 + /2/Z2 

X    yjir (1/4X2 + l/2^2)-1 

where X is the patch size 1/ Au>Sn>mi. 

N 
52

mAu;2     52
wAu;2, 

4 4 + 2^2/X2 

-l 

(18) 

It is instructive to evaluate Eq. (18) in the limits of patch size large and small in 
relation to the correlation length scale. In the large patch size limit (L > I) we 
obtain for the intermodal correlation function (see Annex C for the details of the 
derivation) 

kn+km -(*„,+*„,,) 
x   e 5^r 

X       e~'2(5nm+25"m5n'm'+5^m')/8L2. (19) 

The first term of Eq. (19) represents a decorrelation between modes due to very 
large patch size and differences between the modal wavenumbers which causes a can- 
cellation phenomenon. The second term represents the traditional Bragg scattering 
term, which is the Fourier transform of the correlation function Rv at the sum of 
the incident and scattered wavenumbers. The argument to the third term is the 
difference between the round trip phase between the various candidate mode sets in 
the modal sum. This is identical to the magnitude square of the modal interference 
terms in the round trip propagation to the scattering patch and back, and so repre- 
sents a coherent propagation effect. The fourth term is a spatial decorrelation term 
which increases with range. This represents the decorrelation between modes due 
to the fact that different physical parts of the bottom are illuminated by the two 
round trip mode sets. The equivalent form is 

_-<2Ar2/8L2 
c ) 

where Ar represents the range separation between the patches associated with each 
mode set. For broadband processes we next show that this decorrelation is controlled 
by the correlation length scale £ instead. 

9- 



SACLANTCEN SR-301 

Equation (19) represents the traditional view of scattering in the narrow band limit; 
where the patch size is sufficient to allow Bragg type scattering to occur and lower 
backscattered levels are achieved. The first term in Eq. (19) also limits the amount 
of interference structure allowed between mode sets, and in the limit of infinitesimal 
bandwidth (L —> oo) decorrelates all the modal cross terms, destroying the propa- 
gation structure. This transition is given explicitly in the waveguide and bandwidth 
parameters. 

In the small patch size limit {I > L) Eq. (18) reduces to (see Annex C) 

plmn>m>(tJ>L)   ~   e-((*.+*»)»+<*rf+**W 
ft(**fc*m._%±W.) 

X       e nm n'm' 

X      e-*
2(5--2S-SnW+Snw)/^, (20) 

where the last term is equivalent to 

=-Ar2/2^ 

and represents a decorrelation between mode sets associated with the ratio between 
the distance between the mode patches Ar and the correlation length scale t. 

The first term in Eq. (20) represents decorrelation between mode sets associated 
with the spatial aperture L, and differs from the analogous term in Eq. (19) in that 
this decorrelation remains finite for even the diagonal terms where the mode sets 
are identical. In fact this term bears more of a resemblance to the Bragg scattering 
term from the second line of Eq. (19), and may be thought to replace it with a term 
of approximately the form 

e-(fc„,+fcm,)22/L2_ 

This is a key result which shows that in the limit of small patch size, Bragg scatter- 
ing associated with the correlation function of the scattering centers disappears, and 
is replaced by a term which looks very much like Bragg scattering from a scattering 
process with the smaller spatial scale L. This is the manifestation of the extremely 
strong window effect present at short spatial window stales: the local Fourier trans- 
form of the spatial correlation function is severely distorted by the small spatial 
window, with the result that the amplitude of the backscattered field is determined 
more by the variance of the individual scatterers themselves than by resonant type 
terms obtained through the interrogation of multiple scatterers by the larger spatial 
windows obtained with narrower bandwidths. 

The second term is the round trip accumulated phase as in Eq. (19), with the 
distinction that the phase accumulated on the return trip is integrated over the 
range t/Sn>mi associated with the primed mode set. This distinction is thought to 
be inconsequential in comparison to the other differences noted above. 

10 
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Results 

In this section we use the theory developed in the last section to predict the short 
time average of reverberation intensity for the shallow water environment observed 
during the SCARAB'97 experiment in the Capraia basin north of Elba [3]. The 
purpose of this section is not to interpret the data from this experiment, but rather 
to use realistic parameters to show how the reverberation depends on the parameters 
of center frequency, bandwidth, scattering layer, and correlation length scale, as well 
as sourcer-receiver geometry. 

0 
Capria '97 SSP with Jensen bottom 

i           \f       i           i           i           i           i I                   1 

-20 1 :  Bottom 

 Subbottom r        " r 
-40 

•g- -60 

.e 
o 
Q   -80 

-100 

-120 

LI L 

, 

I 
-140  1 1 1_                1                   I                   !                   i                   i 

1500  1510  1520 1530  1540  1550  1560  1570 
Sound speed (m/s) 

1580  1590  1600 

Figure 1 The SCARAB '97 environment chosen for this study. This environment 
models summertime shallow water conditions in the Capraia basin north of Elba. 
The environment consists of a measured sound speed profile taken by XBT on top 
of an upwardly refracting sediment 2.5 m thick with a density of 1.75 g/cm3 with 
a sound speed ranging from 1520 m/s at the water-sediment interface to 1580 m/s 
at the sediment-subbottom interface. The subbottom has a density of 1.8 g/cm3 and 
has a 1600 m/s sound speed. 
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Depth Sound speed (m/s) Density (g/cm3) Attenuation (dB/A) 
0 1520 1.75 0.13 
2.5 1580 1.75 0.13 
halfspace 1600 1.80 0.15 

Table 1 Capraia basin bottom properties used as input into KRAKEN for the 
calculation of modal properties. 

The SCARAB'97 experiment was conducted in June, so the measured sound speed 
profiles were downward refracting. The bottom properties in the Capraia basin 
have been the subject of considerable study [4, 5]; here we adopt a fast upwardly 
refracting bottom used by Jensen to adequately characterize the transmission loss [6]. 
The sound speed profile in the water column and into the bottom is illustrated in 
Fig. 1, and the bottom properties used are indicated in Table 1. 

1600 
Group and phase speeds for Capria '97 

15 20 
Mode number 

Figure 2 The phase (upper curves) and group speed (lower curves) obtained for the 
environment in Fig. 1 using KRAKEN. The repulsion of the phase and group speeds 
is typical of shallow water environments with significant boundary interactions. The 
feature in the group speed near mode 11 is associated with the penetration of the 
higher order modes into the 2.5 meter thick sediment. 

KRAKEN [7] was used to obtain the mode shape functions 4>n and the complex 
wavenumbers kn for this waveguide at center frequencies of 75, 150, 300, and 600 
Hz. The group slownesses dkn/du> and the modal dispersion d2kn/du2 were deter- 
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, x10 d*2k/dw/<2 for Capria '97 

15 20 
Mode number 

Figure 3 The modal dispersion term d2kn/du2 for the SCARAB'97 environment. 
These results, obtained by finite difference, indicate that individual modal arrivals 
spread out over time/range as the modes propagate. The negative sign on these 
values indicates that the lower frequencies have more slowness than high frequen- 
cies. Therefore in this environment high frequencies arrive first in individual modal 
arrivals. 

mined for these center frequencies by finite differences, using a 10 Hz step size. The 
resulting dispersion curves of the waveguide are indicated in Figs. 2 and 3. Inspec- 
tion of the phase and group speeds of the modes shows that there is the typical low 
frequency shallow water behavior, with decreasing group speed for increasing mode 
number. Fig. 3 shows that the magnitude of the dispersion of the modes is in general 
increasing for increasing mode number, which means that higher order modes spread 
out more in time (and space) at long range than do lower order modes, and that 
the sign on the dispersion is negative, which indicates that the higher frequencies 
have less slowness, and therefore travel faster, than do the lower frequencies. The 
result is that at a given bottom patch, the highest frequencies for any given mode 
reach the patch first, and the modes themselves arrive in the order of increasing 
mode number. Close inspection of the dispersion curves indicates that there is an 
interesting kink in the group speed near mode number 11 at 600 Hz. This feature is 
associated with the penetration of the modes into the upwardly refracting sediment 
layer, and results in near zero modal dispersion for mode 11, a circumstance usually 
associated with lower order modes. 

13- 



SACLANTCEN SR-301 

Range for patch size doubling Capria '97 (BW=W/5) 

15 20 
Mode number 

Figure 4 The range at which the bottom patch illuminated by individual modes 
doubles in size as a function of frequency. For this result, 20% proportional band- 
width of the pulse is assumed. The results indicate that for lower order modes the 
patch size only doubles after 1000 km, while for higher order modes the patch size 
can double after as few as 20-40 km. 

The importance of including the modal dispersion term may be understood in terms 
of a range at which this term effectively decreases the bandwidth by a factor of two 
(with the effect of increasing the patch size and therefore the number of contributing 
scatterers at related times by a factor of two.) According to the definition of o\m, 
this range is given approximately by the relation r2Aw = 4/ Au2d2kn/du2. At 600 
Hz for 120 Hz of bandwidth, this range occurs at 30 km for mode 23. The range 
for patch size doubling is plotted in Fig. 4 for various center frequencies for the case 
where the bandwidth is equal to one fifth of the center frequency. As this range is 
proportional to the inverse square of the bandwidth, we see that the importance of 
including this term is accentuated for greater proportional bandwidths. 

The transmission loss throughout the water column and into the first few meters 
of bottom is indicated for the four frequencies of interest in Fig. 5. The number of 
homogeneous modes with phase speed less than the subbottom speed of 1600 m/s 
ranges from 4 at 75 Hz to 32 at 600 Hz. The source depth was chosen in such a way as 
to emphasize coherent interaction between the modes. This is particularly evident 
at 150, 300 and 600 Hz, where the downward refracting nature of the waveguide 
becomes increasingly evident with frequency, yielding bundles of bottom interacting 
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rays with a 2 to 2.5 kilometer cycle distance. These strong bottom interactions will 
be seen to yield increased reverberation at the two-way travel time to the appropriate 
ranges. 

The range-depth transmission loss, the transmission loss at the scattering interface, 
and the short time average of the reverberation received monostatically at 10 m 
depth are shown for the four frequencies of interest in Figs. 6 through 9. In almost 
all of these plots, the similarity between the one-way TL to the scatterers and the RL 
for a receiver depth of 75 m is apparent. The abscissas of the TL plots are scaled in 
such a way that the range maps directly to the average two way group speed of 750 
m/s. Fig. 6 indicates no strong similarity between the RL and the TL plots at 75 Hz, 
but Fig. 7 shows that the strong bottom interaction at approximately 7 km at 150 
Hz is seen to cause an associated large feature in the RL at T ~ (7000m)/(750m/s) 
or about 9 seconds. Two other strong bottom interactions at approximately 13 and 
14.5 km also are seen to cause strong reverberation features at the appropriate travel 
time. 

In Fig. 8 the increasingly ray-like propagation shows an increased number of local 
strong bottom interactions in the TL; two of these in particular show up in the RL, 
from ranges of 6 and 12 km. In Fig. 9 the 600 Hz results show that the theory 
predicts strong reverberation features at 7.5, 14 and 17.5 seconds, consistent with 
regions of strong bottom illumination in the TL at ranges of 6, 11 and 13 km. 

These results represent an overview of the types of results which can be obtained 
with the theory. They were obtained with a perturbation theory scattering kernel 
representation outlines in Annex D for rough surface scattering from the bottom. 
The characteristics of these scattering kernels for water-sediment and sediment- 
subbottom rough surface scattering is outlined in the following sub-section. 
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Figure 5 The transmission loss throughout the watercolumn and into the first few 
m of bottom for the SCARAB'97 environment. Results are shown for 75, 150, 300 
and 600 Hz. The source depth is 10 m and the receiver depth is 75 m. Results 
show that for 150 Hz and higher, the energy is organized into ray-like arrivals which 
interact strongly with the bottom at specific ranges. These strong coherent bottom 
interactions can cause strong features in the RL time series. The coherent reverber- 
ation model developed in this report captures these effects. 
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Figure 6 A comparison between the TL and the RL for propagation and scattering 
in the SCARAB'97 environment at 75 Hz. The second plot is the one-way TL to 
the scattering interface. The third plot is the predicted RL for scattering from this 
interface caused by a 1 m rms roughness with a correlation length scale of 0.5 m. 
The result is obtained for a bandwidth of 5 Hz. 
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_4Q    Transmission loss at water-sediment interface (10 m SD. 150 Hz) 
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Figure 7 This comparison between TL and RL at 150 Hz shows that the strong 
bottom interaction at 7 km causes an associated higher intensity return in the RL 
at about 9 seconds. The null in the TL at 14 km also shows up in the RL at the 
appropriate time of 18 seconds. In this figure the axis on the RL plot is equal to 
the range from the TL plots divided by a round trip group speed of 750 m/s. With 
this scaling strong features in RL can be directly associated on the abscissa with the 
propagation features which cause them. 
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Figure 8 At 300 Hz strong bottom interactions at 6, 10.5, 12 and 13.5 km cause 
associated spikes in the RL at 8, 14, 16 and 17.5 seconds. Again the scatterers are at 
the water-sediment interface with a correlation length scale of 0.5 m. The bandwidth 
is 5 Hz. The coherent interaction between modes for this relatively narrow bandwidth 
ensures that the underlying CW propagation structure leaves its imprint on the RL. 
For broader bandwidths, the structure at late time is reduced. 
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Figure 9 At 600 Hz the TL structure begins to look strongly ray-like, with very 
strong local interactions at a variety of spatial locations. The bottom near 8, 10.5 and 
13 km is particularly strongly illuminated by several ray bundles, causing associated 
features in the RL at 10, 14 and 17.5 seconds. A strong null in the TL at 2 km range 
also causes a strong dip in the RL at 3 seconds. 
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3.1     Contributions from water-sediment and sediment-subbottom roughness 

In this theory, three separate parameters together determine the importance of scat- 
tering into and out of the various modes. These parameters are 1) <j>-, the ability 
of the incident mode n to excite scattering, 2) <f>+, the ability of the scattered field 
to re-radiate into the scattered mode m, and 3) the modal attenuation associated 
with the complex modal eigenvalues kn<m. In the simplified rough surface scattering 
theory developed in Annex D, the ability to excite rough surface scattering is deter- 
mined by the difference between the second derivative of the mode shape function 
at the interface and the square of the first derivative normalized by the mode shape 
function at the scatterer depth 
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Figure 10 Scattering kernel for rough surface scattering from the water-sediment 
interface. Lower order modes excite less scattering, and re-radiate less effectively. 
This kernel is obtained under a perturbation approximation, which for homogeneous 
boundary scattering would lead to the overall power of the kernels increasing 6 dB 
per octave. Here the increase is seen to be greater, mostly due to the increasing 
impedance contrast of the water-sediment interface at higher frequencies. 
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In the simplified theory the ability of the scattered energy to re-radiate into modes 
is taken simply as the point source expansion into the backward propagating modes 

4>ti = <t>m- 

phi_in*phi_out subbottom 75 Hz phi_in*phi_out subbottom 150 Hz 
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phi_in*phi_out subbottom 300 Hz 
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phi_in*phi_out subbottom 600 Hz 

Figure 11 Scattering kernel for sediment-subbottom rough interface scattering. 
These kernels have approximately 20 - 40 dB less power than the water-sediment 
interface kernels in Fig. 10 due to the lower impedance contrast between the sedi- 
ment and the subbottom. Near mode cut-off these scattering kernels become smaller 
because the sediment-subbottom interface impedance goes to zero, resulting in very 
little potential for scattering. 

Under these assumptions, the scattering kernels for rough surface scattering, which 
are magnitude square of the outer product of the scattering functions <f>~ and 0+, can 
be computed using the known mode shape functions. The results are illustrated in 
Fig. 10 for scattering from the water-sediment interface, and in Fig. 11 for scattering 
from the sediment-subbottom interface. These results show that in addition to 
about 20 - 40 dB less scattering potential from the sediment-subbottom scatterers, 
due to the lower impedance contrast, there is also a markedly different spectral 
characteristic to the response. For example, it can be seen that there is much lower 
scattering out of, and back into, the lower order modes, especially at 600 Hz. This 
is caused by the reduced interaction of the lower order modes with the sediment- 
subbottom interface due to the fast subbottom and the lower grazing angle of these 
modes. 
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Figure 12 The two way loss due to the bottom loss tangent for the SCARAB'97 
environment. These values highlight the harshness of the shallow water environment 
for the propagation of acoustic energy. At 600 Hz the modes near cutoff are losing 
nearly 4 dB of acoustic energy for every additional kilometer of propagation to and 
from a scattering patch. 

As time increases, the third factor begins to assert its dominance over the angular 
characteristics of the backscatter. The modal attenuation, illustrated in dB per km 
in Fig. 12 for two way travel in the incoming and the backscattered mode pair, 
filters out the backscattering contribution from the higher order modes. Thus we 
can define an effective scattering kernel 

\i- -m{kn} -Rst{kmy6+12 

which is an explicit function of scatterer range R, may be calculated from the scat- 
tering functions <f>~ and </>+ and the complex modal eigenvalues. The results for 
sediment and subbottom interface scatterers at a scatterer range of 16 km are illus- 
trated in Figs. 13 and 14 respectively. Comparison between Fig. 10-11 and 13-14 
shows that the higher incident and scattered mode numbers contribute significantly 
less to the total scattering from a scatterer at 16 km than they do from a scatterer 
at short range. 
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Figure 13 The effective scattering kernel for scattering from water-sediment in- 
terface roughness 16 km from the source. The high attenuation for the higher order 
modes results in reduced contributions from these mode pairs. The result is that 
modes between the first third and half of the modal spectrum contribute the greatest 
amount to the RL. 
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Figure 14 The effective scattering kernel for scattering from sediment-subbottom 
interface roughness 16 km from the source. Incident mode numbers near the first 
third of the propagating modes, scattering into mode numbers near the midpoint of the 
propagating modal spectrum, give the greatest contribution to the RL for scatterers 
at this range. 
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3.2    Effect of center frequency on RL 

The center frequency controls the characteristics of the reverberation by changing the 
characteristics of the forward propagation and by changing the magnitude and shape 
of the scattering kernel. The ratio of the wavelength to the correlation length scale 
also has a very strong influence on the amplitude of the reverberation, especially for 
Gaussian scatterer spatial correlation properties. For perturbation theory of rough 
surface scattering outlined in Annex D, scattering from homogeneous boundaries 
is predicted to increase proportional to frequency squared. However, as frequency 
increases for a fixed correlation length scale, the Bragg scattering condition begins 
to reduce the component of energy backscattered to the receiver. The result is that 
for scatterers distributed according to a Gaussian correlation function, the theory 
predicts that there is a frequency of maximum backscattering. 
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Figure 15 The RL as a function of frequency for water-sediment interface rough- 
ness scattering from a roughness with a 0.5 m correlation length scale. Results are 
computed at 75, 150, 300 and 600 Hz assuming 20 Hz of bandwidth. The RL is 
predicted to have a maximum near 460 Hz due to correlation length scale effects. 
The results shown here indicate that maximum RL is obtained at 300 Hz, with ap- 
proximately equal RL at 150 and 600 Hz. 

The frequency of maximum backscatter is that frequency above which, for suffi- 
ciently narrow bandwidths, resonant scattering effects would cause a rapid fall-off 
of the RL. For Gaussian correlated scatterers, this frequency has a magnitude of 
approximately 230/£. At this frequency, the power of the resonant scattering term 
in Eq. (19) is 6 dB below its maximum value. For example, the fall off should 
occur for frequencies above approximately 460 Hz for a correlation length scale of 

26 



SACLANTCEN SR-301 

0.5 meter. For frequencies below the resonant scattering threshold, we can expect 
the RL to rise proportional to the frequency dependence of the scattering kernel. 
Perturbation type scattering kernels have a magnitude which increases proportional 
to frequency squared. Thus for these types of kernels, the theory predicts that the 
RL grows proportional to frequency squared below the "resonance" frequency, and 
falls off faster than any power of frequency above it. 

Although the theory cannot explicitly account for correlation function behavior con- 
sistent with power law distributions, it may be easily generalized that the high fre- 
quency asymptote for fractal [8] bottoms with dimension 2 (k~3/2 dependence) will 
be proportional to /a/2, and that for surfaces with a fractal dimension of 3 (space 
filling, very rough bottoms with Ar1/2 dependence) the RL will grow proportional 
to fl2 beyond the "resonance" frequency. In no case should these types of ar- 
guments be taken for frequencies above the range of validity of the perturbation 
approximation itself. 

In Fig. 15 the frequency dependence of the RL for scattering from a water-sediment 
interface roughness with a correlation length scale of 0.5 m is shown for the 20 Hz 
bandwidth case. The maximum RL is seen to occur at 300 Hz. Our simple relation 
predicts a maximum RL at 230/0.5 or approximately 460 Hz. It may also be seen 
from the results that the RL increases roughly 6 dB between 150 and 300 Hz, as 
is predicted for perturbation theory. Between 75 and 150 Hz the increase is larger, 
probably because the bottom impedance contrast at 75 Hz is much lower and this 
causes a substantial additional decrease in the RL over the 6 dB which would be 
predicted for scattering from homogeneous boundaries alone. 
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3.3    Effect of bandwidth on RL 

In the development of the theory it became evident that as bandwidth of the inter- 
rogating waveform is increased, the amount of coherent structure expected in the 
RL is decreased. This is shown through numerical example in Figs. 16 through 19 
for the four frequencies of interest. The results are shown both for water-sediment 
and sediment-subbottom interface scattering. As before, the sediment-subbottom 
scattering results have much the same or less coherent propagation structure and 
lower overall levels. Since some of the lower order modes do not penetrate to the 
sediment-subbottom interface, some of the coherent propagation structure from the 
sediment-subbottom scattering interface for the very small bandwidths may be re- 
duced. 

-♦o 
Capria scattering vs BW (75 Hz) 
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Figure 16 The RL as a function of bandwidth at 75 Hz. The correlation length 
scale is 0.5 m. As the bandwidth increases, the structure caused by the coherent 
interference of the modes is substantially decreased. The solid curves represent the 
reverberation expected from a rough water-sediment interface; the dashed results are 
for reverberation from the sediment-subbottom interface. 

In Fig. 16 the RL expected from a surface with a 0.5 m correlation length scale is 
indicated for processing bandwidths of 5 and 20 Hz at a 75 Hz center frequency. 
The solid curves represent scattering from the water-sediment interface roughness 
of rms amplitude 1 m, and the dashed curves represent scattering from the same 
amplitude roughness at the sediment-subbottom interface. The RL caused by the 
sediment-subbottom scatterers is seen to be approximately 30 dB lower than the 
water-sediment interface result, which is consistent with the fact that the scattering 
kernel itself is about 20 - 40 dB lower.  The results for the 20 Hz bandwidth are 
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significantly smoother than the 5 Hz bandwidth results, and it can also be seen that 
there are slight differences between the coherent structure of the RL for scattering 
from the two different interfaces. 
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Figure 17 RL as a function of bandwidth at 150 Hz. A strong forward propagation 
feature at 9 seconds is less discriminated as the bandwidth increases. This smearing 
of the strong bottom ensonification return in time for higher bandwidths is a conse- 
quence of the smaller number of modes interrogating this part of the bottom at any 
given time. The lack of a strong cancellation phenomena on either side of the conver- 
gence zone is also a function of the smaller individual patch size of the interrogating 
modes. As before, the solid curves show reverberation from a rough water-sediment 
interface; the dashed results are reverberation from the sediment-subbottom interface. 

The 150 Hz result in Fig. 17 shows that the strong return near T = 9 seconds for 5 Hz 
of bandwidth is also predicted to be seen for 20 Hz of bandwidth, but the strength 
of the return is spread out over more time due to the smaller number of modes 
interrogating the patch at any given time. In the sediment the scattering results 
are roughly the same, with approximately 30 dB less scattering strength. The same 
is true for the 300 Hz case illustrated in Fig. 18 and the strong return predicted 
at 16 seconds. For 20 Hz of bandwidth, the strength of this return is attenuated 
in relation to the returns from neighboring times, and for 80 Hz of bandwidth the 
structure all but disappears for times greater than about 4 seconds. For the 600 Hz 
case in Fig. 19, bandwidths up to 160 Hz are considered, and it is interesting to note 
that the RL features associated with ray like interactions with the bottom continue 
to be visible even at this bandwidth. 
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Capria scattering vs BW (300 Hz) 
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Figure 18 RL as a function of bandwidth at 300 Hz. Strong bottom interactions 
at round trip travel times of 8 and 16 seconds are clearly seen in the 5 and 20 Hz 
bandwidth case, but at 80 Hz of bandwidth, the RL retains very little predictable 
structure. 
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Figure 19 The RL as a function of bandwidth at 600 Hz. Results for 5, 20, 80 
and 160 Hz of bandwidth are illustrated in blue, green, magenta and red, respec- 
tively. Very strong bottom interactions at round trip travel times of 5, 8, 11, 14 and 
17 seconds are visible at all the bandwidths, but with less resolution at the highest 
bandwidths. 
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3.4    Effect of correlation length scale on RL 

As discussed above, for any correlation length scale there exists a resonance frequency 
at which the RL is maximized. At fixed frequency and for narrow bandwidths, there 
is a related resonance correlation length scale with a magnitude of tT ~ 230//. For 
scatterers with correlation length scales longer than the resonance correlation length 
scale, the RL is predicted to decrease proportional to e     ^r. 
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Figure 20 The effect on the structure of the RL at 75 Hz caused by changes in 
the correlation length scale. In general, only the 4.0 meter correlation length scale is 
seen to cause an observable change in the RL, however it is not a signature which one 
would expect to be observable in data. Overall levels in the RL have been removed in 
this figure. The amount to be added to the various levels is indicated in the legend. 

In Figs. 20 through 23 the effect of correlation length scale is shown for water- 
sediment and sediment-subbottom rough surface scattering as a function of center 
frequency. All results are computed using a bandwidth of 20 Hz. Correlation length 
scales considered vary between 0.25 to 4 m. As indicated in Fig. 20, at 75 Hz only 
the 4 m correlation length scale is greater than lT. To ease comparison between 
the results, all the curves have been normalized up to the RL level for scattering 
from the 0.25 m correlation length scale roughness. The solid curves represent the 
RL for water-sediment interface scattering, and the dashed curves indicate the RL 
caused by sediment-subbottom interface scattering. The amount the curves have 
been moved is indicated in the legend. Inspection of the results shows that the 
RL for the 4 m roughness has slightly different structure in comparison to the RL 
caused by the shorter correlation length scales, and that the RL has roughly 11 dB 
less intensity for the 4.0 meter correlation length scale in comparison to the results 
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Capria scattering vs correlation length (150 Hz) 
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Figure 21 RL as a function of correlation length scale at 150 Hz. Here both the 
4.0 and the 2.0 meter correlation length scales have observably different structures 
from the shorter length scales. Of these, the 4.0 meter correlation length scale effect 
might be observable in data. 

for the shorter length scales. The results for the shorter correlation length scales 
are virtually identical both in structure and in intensity, with only 3 dB difference 
between them. The RL for sediment-subbottom interface scattering is approximately 
46 dB lower, and shows remarkably less structure at late time, due to the fewer 
number of modes interacting strongly with the sediment-subbottom interface. As 
with the water-sediment interface results, the RL for the 4 m correlation length scale 
is approximately 10 dB lower than for the shorter correlation length scales. 

At 150 Hz, Fig. 21 indicates that both the 2 and the 4 meter correlation length scale 
roughnesses cause substantially less RL than the shorter length scales. This is in 
agreement with the predicted resonance length £r of 1.5 m for this frequency. The 
properties of the Gaussian correlation function imply that scattering from correlation 
length scales much longer than the resonance length becomes vanishingly small at 
a rate faster than any power of t2/t2

r. This is a pathology which is the cost of 
using the easily integrable Gaussian correlation function in the derivation of the 
theory and is not expected to represent the behavior of scattering from real world 
roughness profiles. The result as it stands is that the RL from the water-sediment 
interface roughness with the 4 m correlation length scale is expected to be 45 dB 
lower than the RL from the same interface with aim correlation length scale. Of 
more interest is the change in the structure of the RL for increasing correlation 
length scale, which is more pronounced than at 75 Hz. This change represents the 
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Capria scattering vs correlation length (300 Hz) 
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Figure 22 RL as a function of correlation length scale at 300 Hz. As in the 150 Hz 
case, only the 4.0 meter correlation length scale causes a significant and measurable 
change in the expected structure of the reverberation. 

signature of correlation length scale predicted to be observable from experiments. 

As at 75 Hz, the RL caused by sediment-subbottom scattering at 150 Hz is seen 
to be about 40 dB lower than for water-sediment scattering. The structure differ- 
ences between these results, along with the lower overall levels, are the signatures 
which distinguish the two scattering mechanisms from one another. In this example 
the strong feature in the RL at 8.5 seconds is predicted to be more prominent for 
sediment-subbottom scattering than for water-sediment scattering, while the earlier 
features in RL are less prominent. 

In Fig. 22 the effect on RL of the various correlation length scales at 300 Hz continues 
to become more pronounced, but the differences between the RL for water-sediment 
and sediment-subbottom scattering seems to become less evident. At this frequency, 
the resonance length scale is .75 m, and even the response from 1 m roughness is 
12 dB lower than from 0.25 m roughness. The response from the 4 m roughness is 
now approximately 130 dB lower than the 2 m response, consistent with the rapid 
falloff of the Gaussian roughness power spectrum for correlation length scales much 
larger than £r. Again, this result is not representative of what one would expect 
for more realistic roughness profiles, but the structural differences in the RL which 
accompany the increase of the correlation length scale are expected to occur for all 
types of roughness profiles and therefore represent a signature of correlation length 
scale in the RL. 
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Capria scattering vs correlation length (600 Hz) 

8 10 12 
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Figure 23 RL as a function of correlation length scale at 600 Hz. Here an inter- 
esting change in the RL features associated with convergence zones on the bottom 
is noticed for the 2.0 meter correlation length scale. Due to the very rapid drop-off 
of the Bragg scattering term from the lightly attenuated lower order modes, the RL 
observed to come from these features is attenuated by 5-8 dB. 

The sensitivity of the RL to correlation length scale at 600 Hz is illustrated in 
Fig. 23. There is a very evident signature of decreasing response at the ray cycle 
times (8, 11, 14 and 17 seconds) with increasing correlation length scale, while again 
the difference between the RL caused by the water-sediment and the sediment- 
subbottom scattering mechanisms seems to lie mostly in the overall decrease in the 
scattering levels for the latter mechanism. The magnitude of these differences in 
the RL between two mechanisms will be dependent on the magnitude of the angular 
differences between the effective scattering kernels. 
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3.5    Comparison of closed form and Monte-Carlo solutions 

To verify that the behavior of the closed form solution in Eq. (16) for the ensemble 
average of the short time average of the reverberation intensity is in agreement with 
what one would obtain by taking an actual ensemble of independent backscattered 
intensity observations, a modified version of Eq. (9) for the backscattered pressure 
was implemented where the azimuthal integral was implicitly performed by replacing 
the scatterer density in range and azimuth rj(r, 6) with an effective scatterer density 
explicit in range only whose standard deviation falls off proportional to one over the 
square root of the scatterer range, consistent with the expression for the effective 
one dimensional scatterer variance derived in Annex A 

'(   \ t     mi (27T)1/47T V(r) = r,(r,9)\e=eref L-J^_. (21) 

In this case Eq. (8) may be rewritten as a range integral only involving the known 
narrowband properties of the waveguide as defined in Section 2 

p(t,Zs,Zr)     =      A»L-**,t £  £ r <Pm(*.)<Kn4P<Pn(*r) 
I m=l n=l V kn^m 

f°° "> 
x     /    dr 77(r)e'(A:«+fc-)re-(*-5'""r)2/4<rnm I (22) 

The transformation in Eq. (21) has the property that the ensemble average of 
the square of Eq. (22) is identically equal to Eq. (16) for Gaussian distributed 
correlation functions. Comparisons between the ensemble average of the square of 
Eq. (22) averaged over 50 realizations of the effective one dimensional scatterer 
realizations in Eq. (21) are illustrated in Figs. 24 through 27 for a source depth of 
10 m, a receiver depth of 20 m, and a correlation length scale of 0.5 m. For the 75 
and 150 Hz center frequency examples, results are shown for bandwidths of 5 and 
20 Hz. For the 300 Hz example in Fig. 26, results are shown for 5, 20 and 80 Hz 
of bandwidth, and for the 600 Hz example in Fig. 27, results are shown for 5, 20, 
80 and 160 Hz of bandwidth. All the results in general show very good agreement 
between the Monte-Carlo ensemble averages and the closed form expressions, and 
serve as an important verification of the closed form expressions. 

It is important to make some observations on the relative merits of evaluating the 
closed form expressions for estimating the ensemble average through the Monte- 
Carlo technique discussed here. First, at very low frequency, the closed form ex- 
pressions are almost always faster to evaluate than the Monte-Carlo results. The 
reason is that as frequency decreases, the requirements on the spatial sampling of 
the range integral in Eq. (22) become dictated by the correlation length scale of 
the scatterer distributions, and therefore the computational effort remains constant 

-35 



SACLANTCEN SR-301 

Capria surface scattering closed form vs realizations (75 Hz) 
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Figure 24 Comparison between closed form solution for RL (solid) and the Monte- 
Carlo result (dashed) for 5 and 20 Hz of bandwidth at 75 Hz. The agreement is good, 
particularly for the 5 Hz bandwidth case. Agreement for the 20 Hz bandwidth case 
could likely be improved through a broadening of the evaluated portion of the range 
integral at late time in the Monte-Carlo calculation, as discussed in the text. 

with frequency below frequencies where the wavelengths become long with respect 
to correlation length scale. On the other hand, as frequency increases, the spatial 
sampling in Eq. (22) becomes dictated by the wavelength of the acoustic waves as 
they become shorter than the correlation length scale (in practice, the roughness was 
sampled at the lesser of every (./1Q or every A/8.) But at frequencies where a large 
number of modes become propagating, the evaluation of the four dimensional modal 
summation in the closed form expression in Eq. (16) rapidly becomes impossible. 

Several steps have been taken in the software which evaluates Eqs. (16) and (22). 
In order to speed up the four dimensional modal summation in Eq. (16), the leading 
term in the modal coherence term Eq. (18) are evaluated, and the calculation inside 
the four dimensional modal summation loop only proceeds if the argument to the 
exponent is greater than that the argument for the highest order mode minus ten, 
so that only modal cross terms of -43 dB and higher relative to the highest order 
mode (neglecting the attenuation due to the imaginary part of the wavenumbers) 
are included. This step significantly decreases the computation at late times when 
the returns from the various modes become uncorrelated, offering factors of 4-10 in 
performance gain. Of course this threshold is adjustable and could be further tuned. 

For the efficient evaluation of the range integrals in Eq. (22), the integrals are 
truncated to evaluate contributions only from scatterers which are in the immediate 
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Capria surface scattering vs closed form vs 50 realizations (150 Hz) 

Figure 25 Comparison between the closed form (solid) and Monte-Carlo (dashed) 
RL at 150 Hz. The excellent agreement for 5 and 20 Hz of bandwidth gives confidence 
that the closed form expressions are correct. 

vicinity of the stationary range rs = t/Snm at the desired time t. The truncation is 
determined by seeking the solution for the range increment Ar on either side of the 
rs where the envelope function exp {-(< - Snm(r ± Ar))2/(7^m} was equal to -60 
dB. For very broad bandwidths, the denominator a\m = 4/Au2 -i2Dnmr becomes 
quite complex, and the solution is no longer obtainable by the quadratic rule, as 
the envelope function become highly oscillatory in range, with an extended envelope 
as discussed at the beginning of this section. In these cases, especially the 80 Hz 
bandwidth case for 300 Hz and both the 80 and the 160 Hz bandwidth cases for 600 
Hz, the range integrals had to be significantly extended around the stationary range 
to get good agreement between the closed form solutions and the ensemble average. 
The computational cost of these extensions of the range integral was very high. In 
cases like these evaluation of the closed form expressions has clear computational 
advantages. 

In general, one may summarize the tradeoff between the closed form expressions 
and the Monte-Carlo technique by stating that the closed form expressions have the 
value that 1) they provide insight, and that 2) they are more efficient to calculate at 
low frequencies. The Monte-Carlo solutions provide no insight per se, but at higher 
frequencies for moderate bandwidths they are more efficient to calculate. However, 
as we discuss in the next subsection, the Monte Carlo solutions offer the additional 
outstanding opportunity to evaluate backscatter from scatterer distributions which 
are spatially correlated in a non- Gaussian way. The Gaussian assumption places a 

-37- 



SACLANTCEN SR-301 

Capria surface scattering vs closed form vs 50 realizations (300 Hz) 
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Figure 26 Comparison between the closed form (solid) and Monte-Carlo (dashed) 
expressions for the RL at 300 Hz for 5, 20 and 80 Hz of bandwidth. To get reasonable 
agreement between the two results at 80 Hz of bandwidth, the spatial extent of the 
range integral over the scatterer distributions needed to be significantly extended in 
the Monte-Carlo result, as discussed in the text. 

very unrealistic restriction of the closed form theory. The ability to treat general 
scatterer correlation functions is perhaps the most outstanding capability offered by 
the Monte-Carlo solution technique. 
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-10 
Capria surface scattering vs dosed form vs 50 realizations (600 Hz) 
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Figure 27 Comparison between closed form (solid) and Monte-Carlo (dashed) ex- 
pressions for the RL at 600 Hz for 5, 20, 80 and 160 Hz of bandwidth, indicated by 
the blue, green, magenta and red curves, respectively. The agreement in all cases is 
very good, giving confidence that the closed form expressions are correct. As men- 
tioned in the text, the range integrals were significantly extended about the stationary 
range in order to have the Monte-Carlo results for 80 and 160 Hz of bandwidth agree 
with the closed form expressions. 
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3.6    Effect of correlation function form on RL 

Aside from providing the opportunity to perform an internal consistency check on 
the closed form expression for the ensemble average of the short time average of 
reverberation intensity, Eq. (22) also has the additional value that scattering from 
roughness profiles with various non-Gaussian correlation properties may be evalu- 
ated and compared to one another and the Gaussian results. Almost all real world 
scatterer distributions have non-Gaussian spatial correlation characteristics. The 
most typical spatial correlation properties, which involve surfaces of various fractal 
dimensions, yield power spectra which are distinctly non-Gaussian and instead obey 
an inverse power law in the spatial wavenumber [8]. The effect of these more real- 
istic scatterer distributions is that as the resonant wavenumber kn + km increases 
for Bragg scattering, the backscatter falls off much more slowly (oc (fcnm^)~(2-4)) 
than in the case of Gaussian scatterer spectra (oc exp {-(knm£)2}.) Not only does 
this imply that the mean levels of the reverberation are higher for surfaces which 
are correlated in a fractal way, but also that the components backscattered from 
lower order modes (which give larger resonant wavenumbers) can give a much larger 
contribution to the total backscatter from fractal scatterers than from Gaussian cor- 
related scatterers, in those cases where the correlation length scale is longer than a 
wavelength. 

-60 
Capria scattering vs correlation function (600 Hz, 1.0 m) 

8 10 12 
Time (sec) 

Figure 28 RL at 600 Hz for various scatterer distributions with a correlation length 
scale of 1.0 m. The power law scatterer spectra cause significantly more backscatter 
from the regions of strong constructive bottom interaction 

The difference between the backscattered intensity from scatterers with Gaussian 
and non-Gaussian correlation properties at 600 Hz is illustrated in Figs. 28 and 29. 
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Capria scattering vs correlation function (600 Hz, 2.0 m) 
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Figure 29 RL at 600Hz for Gaussian, and two power law scatterer distribution 
power spectra with a correlation length scale of 2.0 m. The very low Bragg scattering 
component into the lower order modes in the Gaussian case significantly reduces the 
backscattering contributions associated with the strong bottom interactions at 8, 11, 
14 and 17 seconds. 

The results in Fig. 28 show that for a correlation length scale of 1.0 m, the backscat- 
ter from convergence zone type propagation features on the bottom is much more 
pronounced for 2-D surfaces with fractal dimension 2 to 3 (magenta and green curves, 
respectively) than it is for the Gaussian surfaces (shown in black for closed form and 
in red for Monte-Carlo,) by a factor of about 2-3 dB. Since the lower order modes 
suffer less propagation loss at long range, and they scatter more from the fractal sur- 
faces, the increase becomes more pronounced at later times. This effect can be seen 
even more dramatically in Fig. 29, where for a correlation length of 2.0 m the prop- 
agation induced structure to the reverberation intensity is much more pronounced 
for the two fractal surfaces than it is for the Gaussian surface. 
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3.7    Spatial-temporal coherence of monostatic backscatter 

The closed form theory or the Monte-Carlo results may be used to estimate the 
coherence of the backscatter as a function of vertical separation and time after 
shot . The coherence between the receiver pair [zi,z2] on a vertical line array at 
time t is given in Eq. (12) as 

yJp2
STA{t, z^z^plr^t, z2, z2) 

This quantity was evaluated for the four frequencies of interest at 5, 10, 15 and 20 
seconds and plotted as a function of zx and z2 for 5 Hz of bandwidth in Figs. 30 
through 33. The results indicate a decrease in spatial coherence for very large offsets 
at late time. The decrease in coherence for large receiver separation is caused by the 
modal decollation discussed throughout this report. Since the spatial coherence 
may be thought of as a change of basis on the modal coherence, a decrease in inter- 
modal coherence implies directly the reduced spatial coherence observed in these 
results. 

In Figs. 34 through 37, the vertical coherence at 75, 150, 300 and 600 Hz are il- 
lustrated for 20 Hz of bandwidth. The decrease in spatial coherence at late time 
becomes stronger as bandwidth is increased. For example, the results in Fig. 34 
show that the coherence between receivers at different depths at 600 Hz for 20 Hz 
of bandwidth is already as decorrelated at 5 seconds as Fig. 33 indicates they are at 
the same frequency with only 5 Hz of processing bandwidth a full 20 seconds after 
the shot. 

These vertical coherence results are anticipated to be useful as they serve to provide 
a very important quantity for evaluating the performance of various signal processing 
algorithms for active detection in reverberation limited environments. These results 
also can be used as constraints in the design of processors which are more robust to 
waveguide reverberation. 

In the present formulation of the closed form solution, the coherence between two receivers at 
two different times cannot be obtained, although the modification of the theory to yield this result 
presents no foreseeable difficulties. 
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Figure 30 Vertical coherence 5 seconds after the shot for 5 Hz of processor band- 
width. The results show strong vertical coherence even at large receiver offset, espe- 
cially at 75 Hz. 
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Figure 31 Vertical coherence for 5 Hz of processing bandwidth 10 seconds after 
the shot. The results at 75 and 150 Hz are more banded than at 5 seconds. The 
results at 300 and 600 Hz shows high off-diagonal correlation and some underlying 
structure which appears undersampled. 
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Figure 32 The vertical coherence 15 seconds after the shot for 5 Hz of processing 
bandwidth. The results at 75 and 150 Hz have become more diagonalized, but all 
the results continue to show quite high coherence for large receiver offsets. A trend 
towards increasing spatial coherence near the source depth of 10 m is noticeable. 
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Figure 33 Vertical coherence at 600 Hz for 5 Hzv of processing bandwidth 20 sec- 
onds after the shot. Results at 300 and 600 Hz continue to show larger off-diagonal 
coherence. 

-45- 



SACLANTCEN SR-301 

75 Hz (20 Hz BW, 5 sec) 150 Hz (20 Hz BW, 5 sec) 

50 100 
Depth (m) 

300 Hz (20 Hz BW, 5 sec) 

0 50 100 
Depth (m) 

600 Hz (20 Hz BW, 5 sec) 
■ ■ ■ 1 MM    IMMi m    1 

1201 

0 50 100 
Depth (m) 

Figure 34 Vertical coherence at 5 seconds after the shot for 20 Hz of processing 
bandwidth. These results are much more diagonal than the results at the same time 
shown in Fig. 30 for 5 Hz of bandwidth, and bear more of a resemblance to the 5 
Hz results for 20 seconds after the shot illustrated in Fig. 33. 
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Figure 35 The vertical coherence 10 seconds after the shot for 20 Hz of bandwidth. 
The results at 75 and 150 Hz are diagonalized. At the higher frequencies some 
off-diagonal structure is still observed. As in the coherence examples for 5 Hz of 
bandwidth, there is a trend towards increasing spatial coherence near the source 
depth of 10 m, especially at 75 and 150 Hz. 
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Figure 36 The vertical coherence at 15 seconds for 20 Hz of bandwidth. Only the 
600 Hz result retains significant off-diagonal structure. Note the decreasing width 
of the diagonal coherence structure with increasing frequency. The trend towards 
increasing spatial coherence near the source depth is continued. 
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Figure 37 Coherence at 20 seconds and 20 Hz of bandwidth. The results below 600 
Hz are quite diagonal, with decreasing spatial coherence scale as frequency increases, 
as shown by the narrowing of the highly correlated region in the immediate vicinity 
of the main diagonal. The remaining off-diagonal coherence at 300 and 600 Hz is 
expected to go to zero as the bandwidth is further increased. 
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Conclusion 

The short time average of the monostatic backscattered reverberation intensity in 
a waveguide has been obtained as a function of 1) scatterer parameters of i) corre- 
lation length scale, ii) correlation function and Hi) scatterer interface or depth, 2) 
the processing bandwidth parameter, and 3) the channel parameters of i) number 
of propagating modes, and ii) their associated wavenumbers, shapes, slownesses and 
curvatures, and Hi) their ability to excite the scatterers. The results indicate that 
as processing bandwidth is increased, the predictable structure to the reverberation 
is decreased, with an accompanying decrease in the vertical coherence, at late time. 
The results also show that scatterer depth, for instance on the water-sediment inter- 
face, or at the sediment-subbottom interface, can significantly affect the levels, and 
the temporal characteristics of the received reverberation. Changes in the correla- 
tion length scale can also produce observable changes in the reverberation structure 
for otherwise fixed processing and channel parameters. For Gaussian correlated 
scatterers, a frequency of maximum reverberation is predicted, below which rever- 
beration intensity grows proportional to frequency squared for perturbation theory 
scattering kernels, and above which the reverberation intensity falls off faster than 
any power of frequency. 

Results obtained in this report also indicate that the spatial structure of the forward 
propagation has a very significant influence on the expected temporal structure of 
the reverberation. Convergence zones onto the scattering layer and other patho- 
logical features in the forward propagation can cause associated large peaks in the 
reverberation intensity at the appropriate round trip travel time. The characteristics 
of the reverberation features turn out to be well defined functions of the waveguide 
and scatterer parameters, the center frequency, and the bandwidth. Until now, 
most scattering theories have ignored the coherent interaction between the various 
propagation paths. The work presented here shows that these terms need not be 
neglected, that they can be treated in a robust way, and that when these terms are 
retained additional insights are gained into the rich physics of waveguide reverber- 
ation. In addition, since propagation induced features are commonly observed in 
reverberation data sets, retention of these terms is also an advantage for developing 
a better understanding of the features which are found in these data. 

The closed form solutions of the short time average of the backscattered intensity 
developed in this report have been benchmarked against self-consistent Monte-Carlo 
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predictions, with good results. The Monte-Carlo predictions have also been used 
to predict the differences between the reverberation caused by Gaussian and non- 
Gaussian correlated scatterers. These results show the observability of scatterer 
correlation properties in the reverberation signature. The reverberation time series 
generator used to obtain the Monte-Carlo results also delivers a capability to evaluate 
the higher moments of the reverberation statistics for various scatterer correlation 
length scales, spatial correlation properties and amplitude distributions. Although 
this capability was not explored in this work, it is believed that this capability will 
prove valuable for developing an understanding of the non-Rayleigh distributions 
of reverberation intensity which are often observed in shallow water reverberation 
data [9]. 

In general, the theory enhances understanding of how waves interact with roughness 
to cause reverberation in waveguides. How the coherence between the backscattered 
modes is affected by time after shot, correlation length scale and patch size have all 
been rigorously identified in the closed form solution, and various limiting behaviors 
have been identified and discussed. In particular, the results show that for very 
narrow bandwidths, the traditional view of reverberation as Bragg scattering from 
patches of limited spatial extent is correct, but for very large bandwidths, Bragg 
scattering does not occur and reverberation levels are much higher and more spatially 
uncorrelated. The theoretical results also show that coherent interference structure 
between modes which interrogate different parts of the bottom can be expected when 
the correlation length scale is longer that the modal separation distance. These 
results, while heuristically predictable, are here explicitly given for the first time in 
terms of the various parameters which define a monostatic reverberation experiment. 

Finally, the time-dependent coherence between the modes derived in this report has 
provided a means for predicting the vertical coherence in the waveguide as a function 
of relevant parameters. It is believed that this capability of the theory will prove 
useful for guiding the design of robust algorithms for active localization of targets 
in reverberation limited environments. 
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Annex A 

Evaluation of azimuth integrals 

An anisotropic Gaussian correlation function with its major and minor axes aligned 
with the x — y coordinate system has the following form 

R^Wy&M~X2'2il~y2l2l2y) 

which upon insertion of the change of coordinates given in Eqs. (14) is 

(rj2) Rn   =   ^ exp(-rV sin2 0/2^+ r2 cos 0/2^)) 

A 

x    exp(-0" (2rr"cos 9sin 0(1/1% - l/12
x))) 

" V ' 

B 

X    exp(- (r//2(cos2 9/21* + sin2 0/2t2
y))) (23) 

The change of coordinates in Eqs. (14) is explicit in the difference range r" and angle 
9" between two scattering centers. If we assume that the scatterers are distributed 
homogeneously in space, then we may integrate over the difference angle 9" without 
regard to the absolute angle 9. The solution is 

f dO"Rn = Cxe~ceB2l*A J d^'e^8"2 e~Be" e~B2'iA (24) 

where C\ = 2ff't . The argument to the exponent in Eq. (24) is a perfect square. 
In the limit of range large in comparison to correlation length scale (almost always 
the case for times of practical interest,) the limits of the 9" integral may be extended 
to plus and minus infinity. In this case Eq. (24) reduces to 

j     d9"Rn   =   Cie-
ceB2/4AyftiÄ 

= ^rr\/*/(r2 sin2 em+r2 cos 0/2^) 2Tr1x1y 

X    exp(-(r"2(cos2 9/21% + sin2 0/2^))) 

r"\l/il-l/tl? 
XPlsec2 9/211 + csc2 9/21\} (25j 

which upon some rearrangement gives Eq. (15). 
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Annex B 

Evaluation of range integrals 

To evaluate the r and r" integrals in Eq. (16) we must first appeal to two approx- 
imations. The first approximation is that the range integrals over r and r" both 
may be artificially extended to minus infinity. This approximation is found to be 
good for times greater than the pulse duration 2JT/ A u. For these times, all the 
scattering contributions come from ranges greater than zero, and so the scattering 
integrals may be artificially extended to minus infinity for the convenience of their 
evaluation. 

The second approximation is that for the closed form evaluation of the scattering 
integrals, the explicit dependence of a\m and a\,m, on range must be approximated 
by a dependence on time over round trip slowness Snm (or Sn>m') 

<rnm ~ Aw2(l + iDnrn&u2tlASnm)-\ 

The same approximation is also required for the r-1 term in the denominator of 
the correlation function which was found in Annex A to result from the azimuthal 
integration of the scattering correlation function. This term is replaced by the 
approximation 

T        — Jnm/t. 

This approximation is good when the range differential over the entire patch is a 
small fraction of the average range, a condition satisfied for 

27rw0/ Auknm < tüJ0/knm, 

or for times much greater than one over the bandwidth of the pulse function in 
Hertz. 

Use of the two above approximations allows the closed form evaluation of the range 
integrals through the use of standard techniques. 

The first integral over r" is evaluated in the following way. We square out any terms 
containing r", and collect terms of various orders. Doing this, we find that we have 
the following terms quadratic, linear and independent of r" in the exponent 
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exp 
S° ,      *W ^+^)-r{^t + t^; + i(K^-Kn'rnO 

+ t2   ,    t2 

4Ö2"        ■" XT5 

C" 

exP [ -^ (rSlm,/2a2
n,ml - *Sn,m,/2^,m, + i(ÜTn,m,)) | 

x   exp I -^(5^/4^ + 1/2/2) I 

A" 

(26) 

where JäTnTO = kn + km and üTnW = *n/ + km,. 

To complete the square we require a term of the form -B'nßA" in the exponent. 
Adding this term inside the integral (and subtracting it away outside,) we can con- 
veniently evaluate the r" range integral for a contribution of 

^e*'V""e-C" = ^/(em,/4^,m, + 1/2*) 

x    -n | ^n'mWm'»-2 ~ 2-Wr* + f2)/4*T*,m, + iSn.m.Kn,m.(Sn.n>r - t)/<rlml 

X    exp I — I r 

(#«'/<&»'+ 2/*) 
.    <72 ?2 ,2 /   JTim   _j_   -Vm' 

4^nm        4CT
: 

La'   )       r(
Snmt        Sn,m4 \ 

1>J Wn^^m^
{    Um~      n'm,)) 

+   ^~ + A(T2       '   4/T2 (27) 

Eq. (27) remains under the r range integral, and contributes to its kernel, which 
may be rearranged into exponential powers Ar2, Br and C which are quadratic, 
linear and independent in r respectively 

54- 



SACLANTCEN SR-301 

/ 

exp _r2 ( Sn'm'/^n'm'        ,     ^nm     ,     ^n'm' 
•2        I „2 .   nlf> T   . .t        i 

tSZ,m,/*ln, + 2/P     4aln     4<72,, 

\ 

x   exp —r 
-!'(^nm - Ä"n'm')) 

x   exp 

(28) 

B 

'2       |        *2 ^^^M^-^nwJfnw/^-^ 
4<T2 4<T2 em'/^m, + 2/^2) 

Completion of the square of e j4r e~Br and integration over r yields 

yfr/Aex]?(-B
2/4A) = 

N */ 
^n'm'/4(7n'm' ,    ^m     ,     ^n'm' + + ^n,'/^m(+2/^)-4a2m

T4a2,m,' 
(29) 

x   exp 
V ^K.J+VP £L       2%^      ly«™      Kn'm>)j 

 , n'm'l    n'm' C2 S2 

-_ n'mv "'"»'        j. Jnm   i      n'm' 

Rearrangement of Eq. (29) and multiplication with the exp(-C) from Eq. (28) and 
the constant term under the radical from Eq. (27) yields the closed form evaluation 
of the double range integrals over r" and r 
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exp   - 
4<r2 

x   exp 

- ^-(i - R) + (it^a. + %&*) (1 _ R)) 
4<7n'm' V     bn'm' Sn'm'       J J 

* (gfc + gffii - *)) +J(Knm - gwW(l - a)))2 

S- + 5^(i-Ä) 

(30) 

where 

j? = fl + ^M! 
-l 

#„,,*. 

After some rearrangement Eq. (30) yields the terms inside the quadruple modal sum 
in Eq. (16) which are equivalent to the double range integrals over the scatterers 
under the approximations outlined at the beginning of this Annex. 
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Annex C 

Asymptotic forms of 
intermodal correlation function 

For the limit L > I Eq. (18) reduces to 

\~TL (Srim + Sn>mi) + 2^j (kn + km - (kni + kmi))j 
p     =   2x£L exp 

Snm + Sn'm> 

x   exp{-*2Au>72-(A;„' + Jbm/)^2/2}. (31) 

The argument of the first exponent can be expanded and added to the argument of 
the second exponent. Multiplying through by the common denominator we obtain 
as the argument 

(t2 Aw2(52
m + 2SnmSn,m, + S2,m,)/4 

+   it(Snm + Snim')(kn + km- (kn, + kmi)) 

- (k„, + km- (kn> + km,))2 A w2 

- t*Au\S*nm + Slm,)/2 

- (knl + km,)H\S2
nm + Slml)/2) 

x    (s2
m + S2,m,)_1 (32) 

The first and the fourth line, together with the identity Aw2 = l/S2,m,L2 combine 
to give an exponent approximately of the form 

t2 

~8L2m ~ ^      m   n'm' "*"     n'm')- 

The second line gives an exponent approximately of the form 

it(kn + km- (kn> + kmi))/Snm. 

The third line gives an exponent of the form 

-(kn + km- (kn> + km,))2I?, 

and the fifth line gives the term 

-(*n' + *m')2'3/2. 

57 



SäCLANTCEN SR-301 

The meanings associated with these four terms are explained in the main body of 
the text. 

For the limit £ > L Eq. (18) reduces to 

' (^ (Snm + 2%Sn.m>) +£;(kn + km- 2%{kn, + km.j))2 ^ 
^iL eXP \ ~ 02      ■  9L»  

V 

«P (- (-4-(1 + V} + l     Sn.m.      + {kn' 
+ km,)2L2)\.     (33) 

Expanding the denominator of the argument to the first exponent for small L2/£2 

and selectively keeping terms from the numerator to first order or lower we obtain 

Aw2 L2 L2 

7—(slm + 4-pSnmSnim> + ■ • -)(S~m - 2—S~mSn,m, + ■•■) 

+   it(kn + km)/Sn 

-   (kn + km)2L2 
Jnm 

which when multiplied through (again keeping only terms order L2/£2 and lower) 
may be added to the argument of the second exponent to give gument of the second exponent to give 

 ^ {-^-p^nm^n'm' + ^^nm^n'm1 + l^) 

.. I kn' T "<m'        "-n T Km \ 

\     &n'm' "nm     / 

"     ((kn + km)2 + (kn + km)2)L2, 

which upon insertion of the identity Au>2L2 = S~?m, yields 

t2 

~^p(Snm ~ 2SnmSn,m, + Sn,m,) 

.. 1 kn' 4* km'     kn + km \ 
\     Jn'm' ^nm     / 

-    ((*„ + km)2 + (kn + km)2) L2, 

the terms of which are explained in the text. 

(34) 
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Annex D 

Expressions for small perturbation 

scattering from boundary impedance 

Consider the following boundary condition at a rough interface in a waveguide 

P     -z 
dp/dn 

Let us call the lefthand side of this equation the boundary operator B which operates 
on the total pressure p. 

In perturbation theory we expand the boundary operator about a local roughness 
excursion 77, and let it operate on the sum of the unperturbed and scattered fields p 
and pa. In the limit of zero scatterer slope we have 

(B + V-£)(P + PS) = Z, (35) 

where 
B=     P 

dp/dz' 
and 

dB _ p      d2p 
dz ~       (dp/dz)2 dz2' 

In this case Eq. (35) may be written 

P + P>        , „ (, _ P + Ps        d2(p + p3)\ _ 
d(p + pa)ldz T ' ^       (d(p + Pa)/dx)*      dz2      )     *' 

or approximately 

d2(P + P*Y P + P,       p + p3   dp,       I 
dp/dz   (dp/dzy dz +T]\ 

Retaining terms of order p we have 

P+ P°    +2-P + Ps   d?3 

dp/dz 

while to first order in rj and pa we have 

{dp/dzf '    (dp/dz)3 dz 

p   =z, 

dz2 ~z 

P       dps -    J^ P      d2P\ (iR\ 
dp/dz     (dp/dz)2 dz ' \      (dp/dz)2 dz2 
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Eq. (36) may be recast to give the vertical derivative of the scattered field in 
term of the scattered field itself and the first and second vertical derivatives of the 
unperturbed pressure p 

Now we may use Green's third identity to formulate the scattered pressure received 
at any point in the waveguide in terms of the scattered field and its vertical derivative 
along the boundary of the waveguide 

which upon the insertion of Eq. (37) yields 

Eq. (39) may be written in final form by using the following far field approximations 
for the unperturbed waveguide 

%e ^  (40) G(z,zb;r) = S2<j>m(zb)<t>m(z)-= 

and 

p(zb; r) = e-^fi/^Yl an<t>n{zh)^=, (41) 

where an are the modal amplitude coefficients excited by the source. Inserting Eqs. 
(40) and (41) into Eq. (39) we obtain the final expression for the scattered field 
obtained on the receiver as a function of the mode shape functions and wavenumbers 
of the waveguide and the roughness rj 

1 i"2ir /-oo        g«(fcn+ 
Ps^   =    A  2 ( +\        d9       drY,^2an<f>m(zb)<f>m(z)—= 

'd<t>n/dz   d2K 

m 

2, 

dz2 (42) 
r=,+ 
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